cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266686 Expansion of Product_{k>=1} (1 + x^k - x^(3*k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 4, 6, 8, 9, 10, 11, 14, 16, 18, 21, 25, 28, 31, 36, 41, 48, 52, 59, 69, 77, 85, 96, 109, 121, 133, 151, 172, 189, 208, 231, 260, 287, 316, 350, 390, 432, 471, 521, 578, 636, 695, 764, 842, 924, 1009, 1107, 1218, 1330, 1449, 1584
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1+x^k-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[4]] = -1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] - If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-x) - exp(-3*x)) dx = 0.59698046904738615106237970379036510874974380079287087827737... . - Vaclav Kotesovec, Jan 05 2016