This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266695 #44 Feb 16 2025 08:33:28 %S A266695 1,1,2,4,14,46,230,1066,6902,41506,329462,2441314,22934774,202229266, %T A266695 2193664790,22447207906,276054834902,3216941445106,44222780245622, %U A266695 578333776748674,8787513806478134,127464417117501586,2121181056663291350,33800841048945424546 %N A266695 Number of acyclic orientations of the Turán graph T(n,2). %C A266695 The Turán graph T(n,2) is also the complete bipartite graph K_{floor(n/2),ceiling(n/2)}. %C A266695 An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1. %H A266695 Alois P. Heinz, <a href="/A266695/b266695.txt">Table of n, a(n) for n = 0..475</a> %H A266695 Beáta Bényi and Peter Hajnal, <a href="https://arxiv.org/abs/1510.05765">Combinatorics of poly-Bernoulli numbers</a>, arXiv:1510.05765 [math.CO], 2015; Studia Scientiarum Mathematicarum Hungarica, Vol. 52, No. 4 (2015), 537-558, DOI:<a href="https://doi.org/10.1556/012.2015.52.4.1325">10.1556/012.2015.52.4.1325</a>. %H A266695 P. J. Cameron, C. A. Glass, and R. U. Schumacher, <a href="https://arxiv.org/abs/1412.3685">Acyclic orientations and poly-Bernoulli numbers</a>, arXiv:1412.3685 [math.CO], 2014-2018. %H A266695 Richard P. Stanley, <a href="http://dx.doi.org/10.1016/0012-365X(73)90108-8">Acyclic Orientations of Graphs</a>, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8. %H A266695 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a> %H A266695 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> %F A266695 a(n) = Sum_{i=0..floor(n/2)} i!^2 * Stirling2(ceiling(n/2)+1,i+1) * Stirling2(floor(n/2)+1,i+1). %F A266695 a(n) = A099594(floor(n/2),ceiling(n/2)). %F A266695 a(n) = Sum_{k=0..n} abs(A266972(n,k)). %F A266695 a(n) ~ n! / (sqrt(1-log(2)) * 2^n * (log(2))^(n+1)). - _Vaclav Kotesovec_, Feb 18 2017 %p A266695 a:= n-> (p-> add(Stirling2(n-p+1, i+1)*Stirling2(p+1, i+1)* %p A266695 i!^2, i=0..p))(iquo(n, 2)): %p A266695 seq(a(n), n=0..25); %t A266695 a[n_] := With[{q=Quotient[n, 2]}, Sum[StirlingS2[n-q+1, i+1] StirlingS2[ q+1, i+1] i!^2, {i, 0, q}]]; %t A266695 Array[a, 24, 0] (* _Jean-François Alcover_, Nov 06 2018 *) %Y A266695 Column k=2 of A267383. %Y A266695 Cf. A099594, A212084, A212085, A266858, A266972. %Y A266695 Bisections give A048163 (even part), A188634 (odd part). %K A266695 nonn %O A266695 0,3 %A A266695 _Alois P. Heinz_, Jan 02 2016