This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266702 #11 Sep 29 2016 14:29:40 %S A266702 3,-25,-35,-117,-279,-757,-1955,-5145,-13443,-35221,-92183,-241365, %T A266702 -631875,-1654297,-4330979,-11338677,-29685015,-77716405,-203464163, %U A266702 -532676121,-1394564163,-3651016405,-9558485015,-25024438677,-65514830979,-171520054297 %N A266702 Coefficient of x in minimal polynomial of the continued fraction [1^n,1/3,1,1,1,...], where 1^n means n ones. %C A266702 See A265762 for a guide to related sequences. %H A266702 Colin Barker, <a href="/A266702/b266702.txt">Table of n, a(n) for n = 0..1000</a> %H A266702 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A266702 a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3). %F A266702 G.f.: (3 - 31 x + 9 x^2 + 6 x^3)/(1 - 2 x - 2 x^2 + x^3). %F A266702 a(n) = (2^(-n)*(37*(-2)^n+2*(3-sqrt(5))^n*(-13+sqrt(5))-2*(3+sqrt(5))^n*(13+sqrt(5))))/5 for n>0. - _Colin Barker_, Sep 29 2016 %e A266702 Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: %e A266702 [1/3,1,1,1,...] = (-1 + 3 sqrt(5))/6 has p(0,x) = -11 + 3 x + 9 x^2, so a(0) = 9; %e A266702 [1,1/3,1,1,...] = (25 + 9 sqrt(5))/22 has p(1,x) = 5 - 25 x + 11 x^2, so a(1) = 11; %e A266702 [1,1,1/3,1,...] = (35 - 9 sqrt(5))/10 has p(2,x) = 41 - 35 x + 5 x^2, so a(2) = 5. %t A266702 u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/3}, {{1}}]; %t A266702 f[n_] := FromContinuedFraction[t[n]]; %t A266702 t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}] %t A266702 Coefficient[t, x, 0] (* A266701 *) %t A266702 Coefficient[t, x, 1] (* A266702 *) %t A266702 Coefficient[t, x, 2] (* A266701 *) %o A266702 (PARI) Vec((3-31*x+9*x^2+6*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ _Colin Barker_, Sep 29 2016 %Y A266702 Cf. A265762, A266701. %K A266702 sign,easy %O A266702 0,1 %A A266702 _Clark Kimberling_, Jan 09 2016