This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266704 #12 Sep 29 2016 14:56:36 %S A266704 -3,-19,17,-75,-165,-463,-1181,-3123,-8145,-21355,-55877,-146319, %T A266704 -383037,-1002835,-2625425,-6873483,-17994981,-47111503,-123339485, %U A266704 -322906995,-845381457,-2213237419,-5794330757,-15169754895,-39714933885,-103975046803,-272210206481 %N A266704 Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,2/3,1,1,1,...], where 1^n means n ones. %C A266704 See A265762 for a guide to related sequences. %H A266704 Colin Barker, <a href="/A266704/b266704.txt">Table of n, a(n) for n = 0..1000</a> %H A266704 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A266704 a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3). %F A266704 G.f.: (-3 - 13 x + 61 x^2 - 74 x^3 - 68 x^4 + 34 x^5)/(1 - 2 x - 2 x^2 + x^3). %F A266704 a(n) = 2^(-n)*(43*(-2)^n+2*(3-sqrt(5))^n*(-7+sqrt(5))-2*(3+sqrt(5))^n*(7+sqrt(5)))/5 for n>2. - _Colin Barker_, Sep 29 2016 %e A266704 Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: %e A266704 [2/3,1,1,1,...] = (1+3*sqrt(5))/6 has p(0,x) = -11 - 3 x + 9 x^2, so a(0) = 9; %e A266704 [1,2/3,1,1,...] = (19+9*sqrt(5))/22 has p(1,x) = -1 - 19 x + 11 x^2, so a(1) = 11; %e A266704 [1,1,2/3,1,...] = (-17+9*sqrt(5))/2 has p(2,x) = -29 + 17 x + x^2, so a(2) = 1. %t A266704 u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2/3}, {{1}}]; %t A266704 f[n_] := FromContinuedFraction[t[n]]; %t A266704 t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}] %t A266704 Coefficient[t, x, 0] (* A266703 *) %t A266704 Coefficient[t, x, 1] (* A266704 *) %t A266704 Coefficient[t, x, 2] (* A266703 *) %o A266704 (PARI) Vec(-(3+13*x-61*x^2+74*x^3+68*x^4-34*x^5)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ _Colin Barker_, Sep 29 2016 %Y A266704 Cf. A265762, A266703. %K A266704 sign,easy %O A266704 0,1 %A A266704 _Clark Kimberling_, Jan 09 2016