cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266707 Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,tau,1,1,1,...], where 1^n means n ones and tau = golden ratio = (1 + sqrt(5))/2.

Original entry on oeis.org

1, 5, 4, 19, 41, 116, 295, 781, 2036, 5339, 13969, 36580, 95759, 250709, 656356, 1718371, 4498745, 11777876, 30834871, 80726749, 211345364, 553309355, 1448582689, 3792438724, 9928733471, 25993761701, 68052551620, 178163893171, 466439127881, 1221153490484
Offset: 0

Views

Author

Clark Kimberling, Jan 09 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[tau,1,1,1,1,...] = sqrt(5) has p(0,x) = -5 + x^2, so a(0) = 1;
[1,tau,1,1,1,...] = (5 + sqrt(5))/5 has p(1,x) = 4 - 10 x + 5 x^2, so a(1) = 5;
[1,1,tau,1,1,...] = (9 - sqrt(5))/4 has p(2,x) = 19 - 18 x + 4 x^2, so a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {GoldenRatio}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
    Coefficient[t, x, 0] (* A266707 *)
    Coefficient[t, x, 1] (* A266708 *)
    Coefficient[t, x, 2] (* A266707 *)
  • PARI
    Vec((1+3*x-8*x^2+2*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016

Formula

a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3).
G.f.: (1 + 3 x - 8 x^2 + 2 x^3)/(1 - 2 x - 2 x^2 + x^3).
a(n) = (2^(-1-n)*(-3*(-1)^n*2^(3+n)-(3-sqrt(5))^n*(-7+sqrt(5))+(3+sqrt(5))^n*(7+sqrt(5))))/5 for n>0. - Colin Barker, Sep 29 2016