This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266709 #11 Oct 01 2016 04:40:19 %S A266709 -7,-25,-59,-161,-415,-1093,-2855,-7481,-19579,-51265,-134207,-351365, %T A266709 -919879,-2408281,-6304955,-16506593,-43214815,-113137861,-296198759, %U A266709 -775458425,-2030176507,-5315071105,-13915036799,-36430039301,-95375081095,-249695203993 %N A266709 Coefficient of x in minimal polynomial of the continued fraction [2,1^n,2,1,1,...], where 1^n means n ones. %C A266709 See A265762 for a guide to related sequences. %H A266709 Colin Barker, <a href="/A266709/b266709.txt">Table of n, a(n) for n = 0..1000</a> %H A266709 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A266709 a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3). %F A266709 G.f.: (1 + 3 x - x^2)/(1 - 2 x - 2 x^2 + x^3). %F A266709 a(n) = (2^(-n)*(9*(-2)^n+2*(3-sqrt(5))^n*(-11+5*sqrt(5))-2*(3+sqrt(5))^n*(11+5*sqrt(5))))/5. - _Colin Barker_, Oct 01 2016 %e A266709 Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: %e A266709 [2,2,1,1,1,...] = (7-sqrt(5))/2 has p(0,x) = 11 - 7 x + x^2, so a(0) = -7; %e A266709 [2,1,2,1,1,1,...] = (25+sqrt(5))/10 has p(1,x) = 31 - 25 x + 5 x^2, so a(1) = -25; %e A266709 [2,1,1,2,1,...] = (59-sqrt(5))/22 has p(2,x) = 79 - 59 x + 11 x^2, so a(2) = -59. %t A266709 u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[{2}, u[n], {2}, {{1}}]; %t A266709 f[n_] := FromContinuedFraction[t[n]]; %t A266709 t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}] %t A266709 Coefficient[t, x, 0] (* A236428 *) %t A266709 Coefficient[t, x, 1] (* A266709 *) %t A266709 Coefficient[t, x, 2] (* A236428 *) %o A266709 (PARI) a(n) = round((2^(-n)*(9*(-2)^n+2*(3-sqrt(5))^n*(-11+5*sqrt(5))-2*(3+sqrt(5))^n*(11+5*sqrt(5))))/5) \\ _Colin Barker_, Oct 01 2016 %o A266709 (PARI) Vec(-(7+11*x-5*x^2)/((1+x)*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Oct 01 2016 %Y A266709 Cf. A265762, A236428. %K A266709 sign,easy %O A266709 0,1 %A A266709 _Clark Kimberling_, Jan 09 2016