cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266720 Binary representation of the middle column of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 101, 1011, 10110, 101101, 1011010, 10110101, 101101010, 1011010101, 10110101010, 101101010101, 1011010101010, 10110101010101, 101101010101010, 1011010101010101, 10110101010101010, 101101010101010101, 1011010101010101010, 10110101010101010101
Offset: 0

Views

Author

Robert Price, Jan 03 2016

Keywords

Crossrefs

Programs

  • Mathematica
    rule=59; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)
  • Python
    print([10009*10**n//9900 for n in range(50)]) # Karl V. Keller, Jr., Oct 18 2021

Formula

From Colin Barker, Jan 04 2016 and Apr 18 2019: (Start)
a(n) = (-450*(-1)^n+10009*10^n-550)/9900 for n>1.
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>4.
G.f.: (1+x^3-x^4) / ((1-x)*(1+x)*(1-10*x)).
(End)
a(n) = floor(10009*10^n/9900). - Karl V. Keller, Jr., Oct 17 2021