A266742 Irregular triangle read by rows: T(n,k) = floor(n/(prime(k)-1)), n>=1, 1 <= k <= pi(n+1), where pi is A000720.
1, 2, 1, 3, 1, 4, 2, 1, 5, 2, 1, 6, 3, 1, 1, 7, 3, 1, 1, 8, 4, 2, 1, 9, 4, 2, 1, 10, 5, 2, 1, 1, 11, 5, 2, 1, 1, 12, 6, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 14, 7, 3, 2, 1, 1, 15, 7, 3, 2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 17, 8, 4, 2, 1, 1, 1, 18, 9, 4, 3, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: [1] [2, 1] [3, 1] [4, 2, 1] [5, 2, 1] [6, 3, 1, 1] [7, 3, 1, 1] [8, 4, 2, 1] [9, 4, 2, 1] [10, 5, 2, 1, 1] [11, 5, 2, 1, 1] [12, 6, 3, 2, 1, 1] [13, 6, 3, 2, 1, 1] [14, 7, 3, 2, 1, 1] ...
Links
- H. T. Davis, Tables of the Mathematical Functions, Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX. [Annotated scan of pages 204-208 of Volume 2.] See Table 1 on page 205.
Programs
-
Maple
with(numtheory); f:=n->[seq(floor(n/(ithprime(i)-1)),i=1..pi(n+1))]; for n from 1 to 20 do lprint(f(n)); od: