A266753 Decimal representation of the n-th iteration of the "Rule 163" elementary cellular automaton starting with a single ON (black) cell.
1, 4, 18, 74, 298, 1194, 4778, 19114, 76458, 305834, 1223338, 4893354, 19573418, 78293674, 313174698, 1252698794, 5010795178, 20043180714, 80172722858, 320690891434, 1282763565738, 5131054262954, 20524217051818, 82096868207274, 328387472829098
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Mathematica
rule=163; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
Formula
Conjectures from Colin Barker, Jan 20 2016 and Apr 20 2019: (Start)
a(n) = 5*a(n-1)-4*a(n-2) for n>2.
G.f.: (1-x+2*x^2) / ((1-x)*(1-4*x)).
(End)
Empirical a(n) = (7*4^n - 4)/6 for n>1. - Colin Barker, Nov 25 2016 and Apr 20 2019
a(n) = 4*a(n-1) + 2, n>1, conjectured. - Yosu Yurramendi, Jan 22 2017
a(n) = 2*A020988(n) - A020988(n-1) = A020988(n) + 2^(2n-1) for n > 0, conjectured. - Yosu Yurramendi, Jan 24 2017 [n range correction - Karl V. Keller, Jr., May 07 2022]
Extensions
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022