cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266759 Growth series for affine Coxeter group (or affine Weyl group) D_4.

This page as a plain text file.
%I A266759 #23 Feb 18 2024 12:28:10
%S A266759 1,5,14,32,63,110,179,274,398,557,754,993,1280,1618,2011,2464,2981,
%T A266759 3566,4224,4959,5774,6675,7666,8750,9933,11218,12609,14112,15730,
%U A266759 17467,19328,21317,23438,25696,28095,30638,33331,36178,39182,42349,45682,49185,52864,56722,60763,64992,69413,74030,78848,83871,89102,94547,100210,106094
%N A266759 Growth series for affine Coxeter group (or affine Weyl group) D_4.
%D A266759 N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
%D A266759 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
%H A266759 M. F. Hasler, <a href="/A266759/b266759.txt">Table of n, a(n) for n = 0..499</a>
%H A266759 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 1, -2, 2, -2, 1, -1, 2, -1).
%F A266759 The growth series for the affine Coxeter group of type D_k (k >= 3) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-3,k-1].
%F A266759 Here (k=4) the g.f. is (t^3+1)*(1+t)*(1+t+t^2+t^3)^2/(-1+t^5)/(-1+t)^2/(-1+t^3).
%o A266759 (PARI) A266759_vec(N=100)=Vec((1+t='t)*(1+t^3+O(t^N))*(1+t+t^2+t^3)^2/(1-t)^2/(1-t^3)/(1-t^5)) \\ _M. F. Hasler_, Jul 12 2018
%Y A266759 The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
%K A266759 nonn
%O A266759 0,2
%A A266759 _N. J. A. Sloane_, Jan 10 2016