cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266767 Growth series for affine Coxeter group (or affine Weyl group) D_12.

Original entry on oeis.org

1, 13, 90, 443, 1741, 5811, 17109, 45577, 111852, 256282, 553866, 1138111, 2237936, 4233203, 7736276, 13709265, 23629373, 39718107, 65254122, 104994229, 165732709, 257035638, 392194554, 589452604, 873566421, 1277778529, 1846288195, 2637323484, 3726933976, 5213642329, 7224113781, 9920025945, 13506347040, 18241259200, 24447994900
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.

Formula

The growth series for the affine Coxeter group of type D_k (k >= 3) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-3,k-1].