cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266779 Molien series for invariants of finite Coxeter group A_10.

This page as a plain text file.
%I A266779 #17 Jan 18 2025 19:32:19
%S A266779 1,0,1,1,2,2,4,4,7,8,12,14,20,23,32,38,50,59,77,90,115,135,168,197,
%T A266779 243,283,344,401,481,558,665,767,906,1043,1221,1401,1631,1862,2155,
%U A266779 2454,2823,3203,3668,4147,4727,5330,6047,6798,7685,8612,9700,10843,12168,13566,15178,16877,18825,20884,23226,25707,28517,31489,34842,38396
%N A266779 Molien series for invariants of finite Coxeter group A_10.
%C A266779 The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
%C A266779 Note that this is the root system A_k, not the alternating group Alt_k.
%D A266779 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
%H A266779 Ray Chandler, <a href="/A266779/b266779.txt">Table of n, a(n) for n = 0..1000</a>
%H A266779 <a href="/index/Rec#order_65">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 2, 3, 3, 3, 2, 1, 0, -2, -3, -4, -4, -5, -3, -1, 1, 3, 4, 5, 5, 4, 3, 1, -1, -3, -5, -4, -4, -3, -2, 0, 1, 2, 3, 3, 3, 2, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1).
%H A266779 <a href="/index/Mo#Molien">Index entries for Molien series</a>
%F A266779 G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^11)).
%p A266779 seq(coeff(series(1/mul(1-x^j, j=2..11), x, n+1), x, n), n = 0..70); # _G. C. Greubel_, Feb 03 2020
%t A266779 CoefficientList[Series[1/Product[1-x^j, {j,2,11}], {x,0,70}], x] (* _G. C. Greubel_, Feb 03 2020 *)
%o A266779 (PARI) Vec( 1/prod(j=2,11,1-x^j) +O('x^70)) \\ _G. C. Greubel_, Feb 03 2020
%o A266779 (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^j: j in [2..11]]) )); // _G. C. Greubel_, Feb 03 2020
%o A266779 (Sage)
%o A266779 def A266779_list(prec):
%o A266779     P.<x> = PowerSeriesRing(ZZ, prec)
%o A266779     return P( 1/product(1-x^j for j in (2..11))).list()
%o A266779 A266779_list(70) # _G. C. Greubel_, Feb 03 2020
%Y A266779 Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
%K A266779 nonn
%O A266779 0,5
%A A266779 _N. J. A. Sloane_, Jan 11 2016