This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266782 #20 Feb 12 2024 13:22:17 %S A266782 1,4,9,16,25,37,52,69,88,110,136,165,196,229,265,304,345,388,434,484, %T A266782 537,592,649,709,772,837,904,974,1048,1125,1204,1285,1369,1456,1545, %U A266782 1636,1730,1828,1929,2032,2137,2245,2356,2469,2584,2702,2824,2949,3076,3205,3337,3472,3609,3748,3890,4036,4185,4336,4489,4645 %N A266782 The growth series for the affine Coxeter (or Weyl) group [3,5] (or H_3). %D A266782 N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t). %D A266782 H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10. %D A266782 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial; also Table 3.1 page 59. %H A266782 Vincenzo Librandi, <a href="/A266782/b266782.txt">Table of n, a(n) for n = 0..1000</a> %H A266782 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 0, 3, -3, 0, 3, -3, 1). %F A266782 G.f.: (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2). %p A266782 m:= 60; S:=series((1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), x, m+1): seq(coeff(S, x, j), j=0..m); # _G. C. Greubel_, Feb 04 2020 %t A266782 CoefficientList[Series[(1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), {x, 0, 60}], x] (* _Vincenzo Librandi_, Sep 07 2016 *) %o A266782 (PARI) Vec( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) +O('x^60) ) \\ _G. C. Greubel_, Feb 04 2020 %o A266782 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) )); // _G. C. Greubel_, Feb 04 2020 %o A266782 (Sage) %o A266782 def A266782_list(prec): %o A266782 P.<x> = PowerSeriesRing(ZZ, prec) %o A266782 return P( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) ).list() %o A266782 A266782_list(60) # _G. C. Greubel_, Feb 04 2020 %Y A266782 For the growth series for the finite group see A162495. %K A266782 nonn,easy %O A266782 0,2 %A A266782 _N. J. A. Sloane_, Jan 11 2016