This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266799 #7 Oct 21 2019 15:22:59 %S A266799 1,1,49,229,1861,12001,84241,572209,3935569,26939221,184737301, %T A266799 1265964481,8677687969,59476087009,407659540081,2794128600901, %U A266799 19151272325221,131264694791329,899701808208049,6166647394567441,42266831441062801,289701168799073461 %N A266799 Coefficient of x^0 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones. %C A266799 See A265762 for a guide to related sequences. %H A266799 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,15,-15,-5,1). %F A266799 a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) . %F A266799 G.f.: (-1 + 4 x - 29 x^2 + 16 x^3 - x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5). %e A266799 Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: %e A266799 [sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = 1; %e A266799 [1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 1; %e A266799 [1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 49. %t A266799 u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}]; %t A266799 f[n_] := FromContinuedFraction[t[n]]; %t A266799 t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; %t A266799 Coefficient[t, x, 0] ; (* A266799 *) %t A266799 Coefficient[t, x, 1]; (* A266800 *) %t A266799 Coefficient[t, x, 2]; (* A266801 *) %t A266799 Coefficient[t, x, 3]; (* A266802 *) %t A266799 Coefficient[t, x, 4]; (* A266799 *) %t A266799 LinearRecurrence[{5,15,-15,-5,1},{1,1,49,229,1861},30] (* _Harvey P. Dale_, Oct 21 2019 *) %Y A266799 Cf. A265762, A266800, A266801, A266802. %K A266799 nonn,easy %O A266799 0,3 %A A266799 _Clark Kimberling_, Jan 09 2016