A266800 Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
-8, -12, -98, -636, -4424, -30138, -207032, -1417788, -9720866, -66619404, -456638168, -3129787002, -21452029928, -147034005996, -1007787102434, -6907472856348, -47344530365672, -324504220137018, -2224185061818776, -15244791078484764, -104489352838678178
Offset: 0
Examples
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -8; [1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = -12; [1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = -98.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
Programs
-
Mathematica
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; Coefficient[t, x, 0] ; (* A266799 *) Coefficient[t, x, 1]; (* A266800 *) Coefficient[t, x, 2]; (* A266801 *) Coefficient[t, x, 3]; (* A266802 *) Coefficient[t, x, 4]; (* A266799 *)
Formula
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) .
G.f.: -((2 (-4 + 14 x + 41 x^2 - 43 x^3 + 3 x^4))/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5)).
Comments