A266801 Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
-7, 23, 65, 653, 3935, 28373, 190793, 1317335, 9003953, 61779965, 423273503, 2901611813, 19886759705, 136308977303, 934267517345, 6403586065133, 43890776239583, 300832001287925, 2061932830446953, 14132698865151575, 96866956468010513, 663936003630421853
Offset: 0
Examples
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -7; [1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 23; [1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 65.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
Programs
-
Mathematica
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; Coefficient[t, x, 0] ; (* A266799 *) Coefficient[t, x, 1]; (* A266800 *) Coefficient[t, x, 2]; (* A266801 *) Coefficient[t, x, 3]; (* A266802 *) Coefficient[t, x, 4]; (* A266799 *)
Formula
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) .
G.f.: (7 - 58 x - 55 x^2 + 122 x^3 - 5 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5).
Comments