This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266804 #4 Jan 09 2016 19:59:19 %S A266804 19,19,361,1795,14011,91489,638899,4348051,29883145,204609571, %T A266804 1402971259,9614651329,65903614291,451700107795,3096024736681, %U A266804 21220400800579,145446970016059,996907894114081,6832909585226995,46833455808339091,321001289959109449 %N A266804 Coefficient of x^0 in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones. %C A266804 See A265762 for a guide to related sequences. %H A266804 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,15,-15,-5,1). %F A266804 a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) . %F A266804 G.f.: (-19 + 76 x + 19 x^2 + 10 x^3 - x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5). %e A266804 Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: %e A266804 [sqrt(6),1,1,1,...] has p(0,x)=19-14x-13x^2+2x^3+x^4, so a(0) = 19; %e A266804 [1,sqrt(6),1,1,1,...] has p(1,x)=19-90x+143x^2-90x^3+19x^4, so a(1) = 19; %e A266804 [1,1,sqrt(6),1,1,1...] has p(2,x)=361-722x+527x^2-166x^3+19x^4, so a(2) = 361. %t A266804 u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}]; %t A266804 f[n_] := FromContinuedFraction[t[n]]; %t A266804 t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; %t A266804 Coefficient[t, x, 0] ; (* A266804 *) %t A266804 Coefficient[t, x, 1]; (* A266805 *) %t A266804 Coefficient[t, x, 2]; (* A266806 *) %t A266804 Coefficient[t, x, 3]; (* A266807 *) %t A266804 Coefficient[t, x, 4]; (* A266804 *) %Y A266804 Cf. A265762, A266805, A266806, A266807. %K A266804 nonn,easy %O A266804 0,1 %A A266804 _Clark Kimberling_, Jan 09 2016