cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266819 Expansion of Product_{k>=1} ((1 + x^k) * (1 + 2*x^k)).

This page as a plain text file.
%I A266819 #9 Jan 04 2016 08:51:47
%S A266819 1,3,5,12,20,33,60,93,144,222,340,498,729,1050,1486,2115,2946,4068,
%T A266819 5592,7608,10278,13854,18483,24528,32426,42594,55677,72498,94008,
%U A266819 121290,156002,199842,255012,324438,411318,519771,655128,823056,1031148,1288590,1605945
%N A266819 Expansion of Product_{k>=1} ((1 + x^k) * (1 + 2*x^k)).
%C A266819 Convolution of A000009 and A032302.
%H A266819 Vaclav Kotesovec, <a href="/A266819/b266819.txt">Table of n, a(n) for n = 0..5000</a>
%F A266819 a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(6*Pi)*n^(3/4)), where c = Pi^2/4 + log(2)^2/2 + polylog(2, -1/2) = 2.259213400307794164599109607216595948859... .
%t A266819 nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A266819 Cf. A000009, A032302, A266820, A266822.
%K A266819 nonn
%O A266819 0,2
%A A266819 _Vaclav Kotesovec_, Jan 04 2016