cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266909 Table read by rows: for each k < n and coprime to n, the least x>=0 such that x*n+k is prime.

Original entry on oeis.org

1, 2, 0, 1, 0, 2, 0, 0, 3, 1, 0, 4, 0, 0, 1, 0, 1, 2, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 3, 0, 1, 0, 1, 2, 3, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 3, 4, 1, 0, 7, 2, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 6, 0, 0, 5, 0, 1, 0, 3, 2, 3, 0, 1, 0, 1, 4, 3, 1, 0, 0, 0, 0, 0, 10, 0
Offset: 1

Views

Author

Robert Israel, Jan 05 2016

Keywords

Comments

By Dirichlet's theorem, such x exists whenever k is coprime to n.
By Linnik's theorem, there exist constants b and c such that T(n,k) <= b n^c for all n and all k < n coprime to n.
T(n,1) = A034693(n).
T(n,n-1) = A053989(n)-1.
T(prime(n),1) = A035096(n).
T(2^n,1) = A035050(n).
A085427(n) = T(2^n,2^n-1) + 1.
A126717(n) = 2*T(2^(n+1),2^n-1) + 1.
A257378(n) = 2*T(n*2^(n+1),n*2^n+1) + 1.
A257379(n) = 2*T(n*2^(n+1),n*2^n-1) + 1.

Examples

			The first few rows are
n=2: 1
n=3: 2, 0
n=4: 1, 0
n=5: 2, 0, 0, 3
n=6: 1, 0
		

Crossrefs

Programs

  • Maple
    T:= proc(n,k) local x;
        if igcd(n,k) <> 1 then return NULL fi;
        for x from 0 do if isprime(x*n+k) then return x fi
        od
    end proc:
    seq(seq(T(n,k),k=1..n-1),n=2..30);
  • Mathematica
    Table[Map[Catch@ Do[x = 0; While[! PrimeQ[x n + #], x++]; Throw@ x, {10^3}] &, Range@ n /. k_ /; GCD[k, n] > 1 -> Nothing], {n, 2, 19}] // Flatten (* Michael De Vlieger, Jan 06 2016 *)