A266930 Number of n X 3 binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.
2, 4, 9, 20, 44, 92, 182, 340, 605, 1028, 1680, 2651, 4058, 6045, 8793, 12518, 17484, 24001, 32438, 43222, 56853, 73901, 95024, 120965, 152570, 190786, 236681, 291440, 356388, 432986, 522854, 627768, 749685, 890738, 1053264, 1239799, 1453106
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..0....0..0..0....0..0..0....0..1..1....0..0..0....0..0..1 ..0..1..0....0..0..1....0..0..0....0..0..0....1..0..1....0..0..1....0..0..1 ..1..0..0....1..1..0....0..0..0....1..1..1....1..1..0....0..1..0....1..1..0 ..1..1..1....1..1..0....1..1..1....1..1..1....1..1..0....1..0..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Column 3 of A266935.
Formula
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - 3*a(n-3) + 6*a(n-4) - 6*a(n-7) + 3*a(n-8) + 4*a(n-9) - 4*a(n-10) + a(n-11).
Empirical g.f.: x*(2 - 4*x + x^2 + 6*x^3 - x^5 - 4*x^6 + 4*x^7 + 3*x^8 - 4*x^9 + x^10) / ((1 - x)^7*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jan 10 2019.