A266931 Number of n X 4 binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.
2, 5, 12, 35, 100, 288, 794, 2077, 5110, 11869, 26086, 54543, 108999, 209148, 386883, 692473, 1203061, 2034487, 3357115, 5416951, 8563297, 13284702, 20254831, 30390893, 44926915, 65505045, 94288435, 134099783, 188589873, 262441858
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1....0..0..1..1....0..0..0..0....0..0..0..1....0..0..0..1 ..1..1..0..1....1..1..0..0....0..0..0..1....0..0..1..0....1..1..1..0 ..1..1..1..0....1..1..0..1....0..0..1..0....1..1..0..0....1..1..1..0 ..1..1..1..1....1..1..1..0....1..1..0..0....1..1..0..0....1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..64
Crossrefs
Cf. A266935.
Formula
Empirical: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -9*a(n-4) -a(n-5) +19*a(n-6) +13*a(n-7) -13*a(n-8) -25*a(n-9) -11*a(n-10) +15*a(n-11) +22*a(n-12) +17*a(n-13) -4*a(n-14) -23*a(n-15) -23*a(n-16) -4*a(n-17) +17*a(n-18) +22*a(n-19) +15*a(n-20) -11*a(n-21) -25*a(n-22) -13*a(n-23) +13*a(n-24) +19*a(n-25) -a(n-26) -9*a(n-27) -4*a(n-28) +3*a(n-29) +2*a(n-30) -a(n-31).
Comments