cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266935 T(n,k)=Number of nXk binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.

This page as a plain text file.
%I A266935 #4 Jan 06 2016 11:32:01
%S A266935 2,2,3,2,4,4,2,4,7,5,2,5,9,12,6,2,5,12,20,19,7,2,6,14,35,44,29,8,2,6,
%T A266935 19,52,100,92,42,9,2,7,21,82,210,288,182,59,10,2,7,26,115,429,871,794,
%U A266935 340,80,11,2,8,30,169,816,2577,3566,2077,605,106,12,2,8,35,232,1534,7185
%N A266935 T(n,k)=Number of nXk binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.
%C A266935 Table starts
%C A266935 ..2...2....2.....2......2.......2........2..........2.........2.........2
%C A266935 ..3...4....4.....5......5.......6........6..........7.........7.........8
%C A266935 ..4...7....9....12.....14......19.......21.........26........30........35
%C A266935 ..5..12...20....35.....52......82......115........169.......232.......322
%C A266935 ..6..19...44...100....210.....429......816.......1534......2727......4753
%C A266935 ..7..29...92...288....871....2577.....7185......19529.....50216....125786
%C A266935 ..8..42..182...794...3566...15850....68890.....288333...1155281...4410923
%C A266935 ..9..59..340..2077..13899...96503...671796....4605960..30319512.191420936
%C A266935 .10..80..605..5110..50841..555060..6347005...73046059.821453747
%C A266935 .11.106.1028.11869.173470.2977370.56180274.1104862960
%H A266935 R. H. Hardin, <a href="/A266935/b266935.txt">Table of n, a(n) for n = 1..160</a>
%F A266935 Empirical for column k:
%F A266935 k=1: a(n) = 2*a(n-1) -a(n-2)
%F A266935 k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
%F A266935 k=3: [order 11]
%F A266935 k=4: [order 31]
%F A266935 Empirical for row n:
%F A266935 n=1: a(n) = a(n-1)
%F A266935 n=2: a(n) = a(n-1) +a(n-2) -a(n-3)
%F A266935 n=3: a(n) = a(n-1) +a(n-2) -a(n-4) -a(n-5) +a(n-6)
%F A266935 n=4: [order 17]
%e A266935 Some solutions for n=4 k=4
%e A266935 ..0..0..0..1....0..0..1..1....0..0..0..1....0..0..0..0....0..0..1..1
%e A266935 ..0..1..1..0....1..1..0..0....1..1..1..0....0..0..0..0....1..1..0..0
%e A266935 ..1..0..0..1....1..1..1..1....1..1..1..1....0..0..0..1....1..1..0..0
%e A266935 ..1..1..1..0....1..1..1..1....1..1..1..1....1..1..1..0....1..1..1..1
%Y A266935 Column 1 is A000027(n+1).
%Y A266935 Column 2 is A266464.
%Y A266935 Row 2 is A004526(n+6).
%K A266935 nonn,tabl
%O A266935 1,1
%A A266935 _R. H. Hardin_, Jan 06 2016