A266936 Number of 3 X n binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.
4, 7, 9, 12, 14, 19, 21, 26, 30, 35, 39, 46, 50, 57, 63, 70, 76, 85, 91, 100, 108, 117, 125, 136, 144, 155, 165, 176, 186, 199, 209, 222, 234, 247, 259, 274, 286, 301, 315, 330, 344, 361, 375, 392, 408, 425, 441, 460, 476, 495, 513, 532, 550, 571, 589, 610, 630, 651, 671
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..1....0..0..1..1....1..1..1..1....0..0..1..1....0..0..1..1 ..1..1..1..0....1..1..0..1....1..1..1..1....1..1..0..0....1..1..0..0 ..1..1..1..0....1..1..1..0....1..1..1..1....1..1..0..0....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..158
Crossrefs
Row 3 of A266935.
Formula
Empirical: a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
Empirical g.f.: x*(4 + 3*x - 2*x^2 - 4*x^3 - 3*x^4 + 4*x^5) / ((1 - x)^3*(1 + x)*(1 + x + x^2)). - Colin Barker, Jan 10 2019