A266937 Number of 4 X n binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.
5, 12, 20, 35, 52, 82, 115, 169, 232, 322, 426, 573, 738, 961, 1215, 1543, 1912, 2382, 2905, 3557, 4280, 5161, 6135, 7308, 8594, 10120, 11791, 13749, 15883, 18361, 21049, 24142, 27490, 31307, 35427, 40093, 45111, 50757, 56818, 63594, 70848, 78917, 87535
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..0....0..0..0..1 ..1..1..0..1....0..0..1..0....1..1..0..1....0..0..0..0....0..0..1..1 ..1..1..1..0....1..1..0..0....1..1..1..0....1..1..1..1....1..1..0..0 ..1..1..1..0....1..1..1..0....1..1..1..1....1..1..1..1....1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..87
Crossrefs
Row 4 of A266935.
Formula
Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) + 2*a(n-8) + 2*a(n-9) - a(n-11) - a(n-12) - a(n-13) - a(n-14) + 2*a(n-15) + a(n-16) -a(n-17).
Empirical g.f.: x*(5 + 7*x - 2*x^2 - 4*x^3 - 6*x^4 - 3*x^5 + x^6 + 9*x^7 + 12*x^8 + 2*x^9 -6*x^10 - 4*x^11 - 6*x^12 - 5*x^13 + 9*x^14 + 6*x^15 - 5*x^16) / ((1 - x)^6*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jan 10 2019