This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266942 #6 Jan 08 2016 10:22:04 %S A266942 1,2,10,36,118,376,1156,3392,9734,27230,74256,198724,522292,1348968, %T A266942 3432824,8613856,21330374,52190692,126262774,302222388,716247128, %U A266942 1681575344,3912919956,9028823856,20667406276,46949343786,105881451120,237135574392,527580701456 %N A266942 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - k*x^k))^k. %H A266942 Vaclav Kotesovec, <a href="/A266942/b266942.txt">Table of n, a(n) for n = 0..1000</a> %F A266942 From _Vaclav Kotesovec_, Jan 08 2016: (Start) %F A266942 a(n) ~ c * n^2 * 3^(n/3), where %F A266942 c = 1122422673446372185062691708933615715850.583956830118389527... if mod(n,3)=0 %F A266942 c = 1122422673446372185062691708933615715849.484130848291097773... if mod(n,3)=1 %F A266942 c = 1122422673446372185062691708933615715849.782119252925454917... if mod(n,3)=2 %F A266942 (End) %t A266942 nmax = 40; CoefficientList[Series[Product[((1+k*x^k)/(1-k*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] %Y A266942 Cf. A006906, A022629, A265758, A266891, A266941. %K A266942 nonn %O A266942 0,2 %A A266942 _Vaclav Kotesovec_, Jan 06 2016