cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A266965 Primes of the form p = a^2 + b^2 where |a^2 - b^2| is composite.

Original entry on oeis.org

17, 29, 37, 41, 53, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617, 641, 653, 661, 673, 677, 701, 709
Offset: 1

Views

Author

Altug Alkan, Jan 07 2016

Keywords

Comments

Inspired by A266954.
A266954 is a subsequence.
A067756 lists primes of the form p = a^2 + b^2 where |a^2 - b^2| is prime. So union of 2, A067756 and this sequence gives A002313. 2 is an exception because 1^2 - 1^2 = 0 is not prime or composite.

Examples

			17 is a term because 4^2 + 1^2 = 17 is prime and 4^2 - 1^2 = 15 is composite.
29 is a term because 5^2 + 2^2 = 29 is prime and 5^2 - 2^2 = 21 is composite.
37 is a term because 6^2 + 1^2 = 37 is prime and 6^2 - 1^2 = 35 is composite.
		

Crossrefs

Programs

  • Mathematica
    lim = 50; Take[Select[Union@ Flatten@ Table[If[CompositeQ[Abs[a^2 - b^2]], a^2 + b^2, Nothing], {a, lim}, {b, lim}], PrimeQ], 56] (* Michael De Vlieger, Jan 07 2016 *)
  • PARI
    is(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    f(p) = my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s;
    forprime(p=3, 1e3, if(is(p) && !isprime(2*f(p)^2-p), print1(p, ", ")));
    
  • PARI
    list(lim) = my(v=List(), t); lim\=1; for(x=2, sqrtint(lim), for(y=1, min(sqrtint(lim-x^2), x), if(isprime(t=x^2+y^2) && !isprime(x^2-y^2), listput(v, t)))); vecsort(Vec(v), , 8)
Showing 1-1 of 1 results.