cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266969 Integers k such that A001006(k) is divisible by k.

Original entry on oeis.org

1, 2, 21, 266, 387, 657, 1314, 6291, 16113, 25767, 27594, 41902, 54243, 55314, 56457, 89018, 96141, 155601, 172746, 219842, 294273, 300871, 384426, 412398, 453781, 579474, 653421, 660879, 669609, 951881, 993307, 1117338, 1246077, 1401258, 1438623, 1535409, 1870533
Offset: 1

Views

Author

Altug Alkan, Jan 07 2016

Keywords

Comments

Integers n such that number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle is divisible by n.
Corresponding values of A001006(n)/n are 1, 1, 6787979, ...

Examples

			There are 142547559 ways to join 21 points on a circle by nonintersecting chords. Because of the fact that 142547559 is divisible by 21, 21 is a term of this sequence.
		

Crossrefs

Programs

  • Mathematica
    lim = 100000; t = CoefficientList[Series[(1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2), {x, 0, lim}], x]; Select[Range@ lim, Divisible[t[[# + 1]], #] &] (* Michael De Vlieger, Jan 09 2016, after Jean-François Alcover at A001006 *)
    seq[kmax_] := Module[{mot1 = 1, mot2 = 2, mot, s = {1, 2}}, Do[mot3 = ((2*k+1)*mot2 + (3*k-3)*mot1)/(k+2); If[Divisible[mot3, k], AppendTo[s, k]]; mot1 = mot2; mot2 = mot3, {k, 3, kmax}]; s]; seq[10^5] (* Amiram Eldar, May 12 2024 *)
  • PARI
    lista(kmax) = {my(mot1 = 1, mot2 = 2, mot); print1(1, ", ", 2, ", "); for(k = 3, kmax, mot3 = ((2*k+1)*mot2 + (3*k-3)*mot1)/(k+2); if(!(mot3 % k), print1(k,", ")); mot1 = mot2; mot2 = mot3);} \\ Amiram Eldar, May 12 2024

Extensions

a(8)-a(17) from Michael De Vlieger, Jan 09 2016
a(18)-a(37) from Amiram Eldar, May 12 2024