This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266972 #24 Feb 16 2025 08:33:29 %S A266972 1,1,0,1,-1,0,1,-2,1,0,1,-4,6,-3,0,1,-6,15,-17,7,0,1,-9,36,-75,78,-31, %T A266972 0,1,-12,66,-202,351,-319,115,0,1,-16,120,-524,1400,-2236,1930,-675,0, %U A266972 1,-20,190,-1080,3925,-9164,13186,-10489,3451,0,1,-25,300,-2200,10650,-34730,75170,-102545,78610,-25231,0 %N A266972 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n gives the coefficients of the chromatic polynomial of the (n,2)-Turán graph, highest powers first. %C A266972 The (n,2)-Turán graph is also the complete bipartite graph K_{floor(n/2),ceiling(n/2)}. %H A266972 Alois P. Heinz, <a href="/A266972/b266972.txt">Rows n = 0..140, flattened</a> %H A266972 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a> %H A266972 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a> %H A266972 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> %F A266972 T(n,k) = [q^(n-k)] Sum_{j=0..floor(n/2)} (q-j)^(n-floor(n/2)) * Stirling2(floor(n/2),j) * Product_{i=0..j-1} (q-i). %F A266972 Sum_{k=0..n} abs(T(n,k)) = A266695(n). %e A266972 Triangle T(n,k) begins: %e A266972 1; %e A266972 1, 0; %e A266972 1, -1, 0; %e A266972 1, -2, 1, 0; %e A266972 1, -4, 6, -3, 0; %e A266972 1, -6, 15, -17, 7, 0; %e A266972 1, -9, 36, -75, 78, -31, 0; %e A266972 1, -12, 66, -202, 351, -319, 115, 0; %e A266972 1, -16, 120, -524, 1400, -2236, 1930, -675, 0; %e A266972 ... %p A266972 P:= n-> (h-> expand(add(Stirling2(h, j)*mul(q-i, %p A266972 i=0..j-1)*(q-j)^(n-h), j=0..h)))(iquo(n, 2)): %p A266972 T:= n-> (p-> seq(coeff(p, q, n-i), i=0..n))(P(n)): %p A266972 seq(T(n), n=0..12); %Y A266972 Columns k=0-1 give: A000012, (-1)*A002620. %Y A266972 Main diagonal gives A000007. %Y A266972 Cf. A212084, A266695. %K A266972 sign,tabl %O A266972 0,8 %A A266972 _Alois P. Heinz_, Jan 07 2016