cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266976 Decimal representation of the n-th iteration of the "Rule 78" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 6, 28, 104, 464, 1696, 7488, 27264, 120064, 436736, 1922048, 6989824, 30756864, 111845376, 492126208, 1789558784, 7874084864, 28633071616, 125985619968, 458129670144, 2015770968064, 7330076819456, 32252339683328, 117281237499904, 516037451710464
Offset: 0

Views

Author

Robert Price, Jan 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    rule=78; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* decimal representation of rows *)

Formula

Conjectures from Colin Barker, Jan 08 2016 and Apr 18 2019: (Start)
a(n) = 2^(n-2)*((-2)^n+21*2^n-4)/3 = 2^(n-1)*A277954(n+1) for n>0.
a(n) = 2*a(n-1) + 16*a(n-2) - 32*a(n-3) for n>3.
G.f.: (1+4*x-16*x^3) / ((1-2*x)*(1-4*x)*(1+4*x)).
(End)

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022