cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266985 Least positive integer x such that n + x^3 = y^2 + z^5 for some positive integers y and z, or 0 if no such x exists.

Original entry on oeis.org

7, 1, 2, 34, 1, 55, 3, 5, 30, 1, 3, 242, 6, 7, 3, 26, 1, 4, 2, 7, 5, 3, 62, 3, 77, 1, 107, 10, 2, 2, 3, 6, 1, 2, 128, 1, 1, 4, 3, 11, 1, 3, 2, 6, 7, 5, 22, 1, 50, 1, 7, 5, 6, 16, 3, 3, 1, 2, 4, 62, 2, 17, 19, 6, 1, 8, 14, 1, 4, 3, 11
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 08 2016

Keywords

Comments

The general conjecture in A266277 implies that for any integer m there are positive integers x, y and z with m + x^3 = y^2 + z^5.
See also A266277 and A266528 for similar conjectures.

Examples

			a(0) = 7 since 0 + 7^3 = 10^2 + 3^5.
a(3) = 34 since 3 + 34^3 = 150^2 + 7^5.
a(8) = 30 since 8 + 30^3 = 101^2 + 7^5.
a(11) = 242 since 11 + 242^3 = 3420^2 + 19^5.
a(766) = 90891 since 766 + 90891^3 = 11850281^2 + 906^5.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[x=1;Label[bb];Do[If[SQ[n+x^3-y^5],Print[n," ",x];Goto[aa]],{y,1,(n+x^3-1)^(1/5)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,70}]