A266985 Least positive integer x such that n + x^3 = y^2 + z^5 for some positive integers y and z, or 0 if no such x exists.
7, 1, 2, 34, 1, 55, 3, 5, 30, 1, 3, 242, 6, 7, 3, 26, 1, 4, 2, 7, 5, 3, 62, 3, 77, 1, 107, 10, 2, 2, 3, 6, 1, 2, 128, 1, 1, 4, 3, 11, 1, 3, 2, 6, 7, 5, 22, 1, 50, 1, 7, 5, 6, 16, 3, 3, 1, 2, 4, 62, 2, 17, 19, 6, 1, 8, 14, 1, 4, 3, 11
Offset: 0
Keywords
Examples
a(0) = 7 since 0 + 7^3 = 10^2 + 3^5. a(3) = 34 since 3 + 34^3 = 150^2 + 7^5. a(8) = 30 since 8 + 30^3 = 101^2 + 7^5. a(11) = 242 since 11 + 242^3 = 3420^2 + 19^5. a(766) = 90891 since 766 + 90891^3 = 11850281^2 + 906^5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..3800
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[x=1;Label[bb];Do[If[SQ[n+x^3-y^5],Print[n," ",x];Goto[aa]],{y,1,(n+x^3-1)^(1/5)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,70}]
Comments