A266987 Primes p for which the average of the primitive roots equals p/2.
2, 5, 13, 17, 19, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 307, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449
Offset: 1
Keywords
Examples
a(13) = 13 since the primitive roots of 13 are 2, 6, 7, and 11 and the average of these primitive roots is (2+6+7+11)/phi(12) = 26/4 = 13/2.
Links
- Robert Israel, Table of n, a(n) for n = 1..8213
Programs
-
Maple
proots := proc(n) local r,eulphi,m; if n = 1 then return {0} ; end if; eulphi := numtheory[phi](n) ; r := {} ; for m from 0 to n-1 do if numtheory[order](m,n) = eulphi then r := r union {m} ; end if; end do: return r; end proc: isA266987 := proc(n) local r; if isprime(n) then r := convert(proots(n),list) ; 2*add(pr, pr=r) = n*nops(r) ; else false; end if; end proc: for n from 1 to 500 do if isA266987(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 12 2016 Filter:= proc(p) local x, s,js; if p mod 4 = 1 then return true fi; x:= numtheory:-primroot(p); js:= select(t -> igcd(t,p-1)=1, [$1..p-2]); s:= add(x&^ j mod p, j=js); evalb(s = p/2 * nops(js)) end proc: select(Filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Feb 01 2016
-
Mathematica
A = Table[Total[Flatten[Position[Table[MultiplicativeOrder[i, Prime[k]], {i, Prime[k] - 1}],Prime[k] - 1]]]/(EulerPhi[Prime[k] - 1] Prime[k]/2), {k, 1, 100}]; Prime[Flatten[Position[A, _?(# == 1 &)]]] (* second program (version >= 10): *) Select[Prime[Range[100]], Mean[PrimitiveRootList[#]] == #/2&] (* Jean-François Alcover, Jan 12 2016 *)
Formula
a(n) = prime(A266986(n)).
Comments