This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266990 #29 Oct 09 2021 06:56:48 %S A266990 2,4,5,9,15,17,20,22,23,27,28,31,32,34,36,38,39,41,43,46,47,49,52,54, %T A266990 56,58,61,64,67,69,72,73,76,81,83,85,86,90,91,92,93,95,96,99,101,103, %U A266990 105,107,109,111,118,120,125,128,129,131,132,133,138,141,143,144,146,150 %N A266990 The indices of primes p for which the average of the primitive roots is > p/2. %C A266990 It appears that these primes are all congruent to 3 (mod 4). %H A266990 Amiram Eldar, <a href="/A266990/b266990.txt">Table of n, a(n) for n = 1..10000</a> %F A266990 a(n) = A000720(A267009(n)). - _Amiram Eldar_, Oct 09 2021 %e A266990 a(2) = 4 is a term since prime(a(2)) = prime(4) = 7, the primitive roots of 7 are 3 and 5 and their average is (3+5)/2 = 8/2 > 7/2. %t A266990 A = Table[Total[Flatten[Position[Table[MultiplicativeOrder[i, Prime[k]], {i, Prime[k] - 1}],Prime[k] - 1]]]/(EulerPhi[Prime[k] - 1] Prime[k]/2), {k, 1, 1000}]; Flatten[Position[A, _?(# > 1 &)]] %t A266990 Select[Range[150], Mean[PrimitiveRootList[(p = Prime[#])]] > p/2 &] (* _Amiram Eldar_, Oct 09 2021 *) %Y A266990 Cf. A000720, A008330, A060749, A088144, A267009. %K A266990 nonn %O A266990 1,1 %A A266990 _Dimitri Papadopoulos_, Jan 08 2016