This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267008 #9 Aug 15 2019 23:47:50 %S A267008 1,2,3,10,13,28,58,90,146,260,481,688,1168,1748,2863,4726,6938,10412, %T A267008 16140,23746,35702,55812,79032,116758,168779,247006,350310,513410, %U A267008 744286,1045466,1485685,2098780,2935416,4137878,5746618,8027612,11343706,15487222,21418682 %N A267008 Expansion of Product_{k>=1} (1 + (k+1)*x^k). %H A267008 Vaclav Kotesovec, <a href="/A267008/b267008.txt">Table of n, a(n) for n = 0..10000</a> %p A267008 b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, %p A267008 `if`(n=0, 1, b(n, i-1)+(1+i)*b(n-i, min(n-i, i-1)))) %p A267008 end: %p A267008 a:= n-> b(n$2): %p A267008 seq(a(n), n=0..42); # _Alois P. Heinz_, Aug 15 2019 %t A267008 nmax = 50; CoefficientList[Series[Product[1+(k+1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x] %t A267008 nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; Do[Do[poly[[j+1]] += (k+1)*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly %Y A267008 Cf. A022629, A074141, A267007. %K A267008 nonn %O A267008 0,2 %A A267008 _Vaclav Kotesovec_, Jan 08 2016