This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267028 #68 Nov 02 2021 22:24:51 %S A267028 18713,18719,18731,18743,18749,25603,25609,25621,25633,25639,28051, %T A267028 28057,28069,28081,28087,30029,30047,30059,30071,30089,31033,31039, %U A267028 31051,31063,31069,44711,44729,44741,44753,44771,76883,76907,76913,76919,76943 %N A267028 P(n,k) is an array read by rows, with n > 0 and k=1..5, where row n gives the chain of 5 consecutive primes {p(i), p(i+1), p(i+2), p(i+3), p(i+4)} having the symmetrical property p(i) + p(i+4) = p(i+1) + p(i+3) = 2*p(i+2) for some index i. %C A267028 a(3 + 5*(n-1)) = A051795(n). %C A267028 The immediate objective of the sequence is to examine symmetrical properties in the array P(n,k). It is interesting to note that the results with the dimension 5 are generalizable to the dimensions 7, 9, ... %C A267028 Notation: %C A267028 We introduce the following function S(i,j) where row i is defined by {P(i,k)} and row j is defined by {P(j,k)}, k = 1..5. Let S(i, j) = 1 if P(i,1) + P(j,5) = P(i,2) + P(j,4) = P(i,3) + P(j,3), otherwise 0. %C A267028 Conjecture: %C A267028 For each integer n, there exists an infinite sequence of integers b(n,m), m = 1, 2, ... such that S(n, b(n,m)) = 1. %C A267028 The following table gives the first values b(n,m). %C A267028 Notation in the table: "PS" = primitive sequence. %C A267028 +----+------------------------------------------------+-----------+ %C A267028 | n | sequences b(n,m), m=1,2,... of index |included in| %C A267028 +----+------------------------------------------------+-----------+ %C A267028 | 1 | 1, 2, 3, 5, 8, 9, 10, 12, 15, 16, 17, 18, ... | PS | %C A267028 | 2 | 2, 3, 5, 8, 9, 10, 12, 15, 16, 17, 18, 19, ...| {b(1,m)} | %C A267028 | 3 | 3, 5, 8, 9, 10, 12, 15, 16, 17, 18, 19, ... | {b(1,m)} | %C A267028 | 4 | 4, 6, 11, 13, 14, 21, 28, 35, 39, 57, 59, ... | PS | %C A267028 | 5 | 5, 8, 9, 10, 12, 15, 16, 17, 18, 19, 22, ... | {b(1,m)} | %C A267028 | 6 | 6, 11, 13, 14, 21, 35, 39, 57, 59, 63, 67, ...| {b(4,m)} | %C A267028 | 7 | 7, 30, 52, 55, 73, 74, 115, 159, 177, 183, ...| PS | %C A267028 | 8 | 8, 9, 10, 12, 15, 16, 17, 18, 19, 22, 23, ... | {b(1,m)} | %C A267028 | 9 | 9, 10, 12, 15, 16, 17, 18, 19, 22, 23, 24, ...| {b(1,m)} | %C A267028 | 10 | 10, 12, 15, 16, 17, 18, 19, 22, 23, 24, 26, ...| {b(1,m)} | %C A267028 | 11 | 11, 13, 14, 21, 28, 35, 39, 57, 59, 63, 67, ...| {b(4,m)} | %C A267028 | 12 | 12, 15, 16, 17, 18, 19, 22, 23, 24, 26, 27, ...| {b(1,m)} | %C A267028 | 13 | 13, 14, 21, 28, 35, 39, 57, 59, 63, 67, 70, ...| {b(4,m)} | %C A267028 | .. | ... | ... | %C A267028 | 20 | 20, 43, 56, 96, 113, 131, 135, 156, 196, ... | PS | %C A267028 | 25 | 21, 33, 37, 38, 40, 47, 48, 65, 76, 79, 83, ...| PS | %C A267028 ... %C A267028 Example: S(7, 30) = 1. %C A267028 We observe primitive sequences {b(n,m)} for n = {1, 4, 7, 20, 25, ...}. %C A267028 (A primitive sequence is a sequence which is not included in another.) %C A267028 Properties: %C A267028 (1) S(i, i)= 1 for all i; %C A267028 (2) S(i, j) = 1 => S(j, i) = 1; %C A267028 (3) S(i, j) = 1 and S(j, L) = 1 => S(i, L) = 1. %C A267028 Example: %C A267028 For n = 1, {P(1,k)} = {18713, 18719, 18731, 18743, 18749}; %C A267028 we choose, for instance, b(1,2) = 3 => for n = 3, {C(3,k)} = {28051, 28057, 28069, 28081, 28087}; %C A267028 S(1,3) = 1 because 18713 + 28087 = 18719 + 28081 = 18731 + 28069 = 18743 + 28057 = 18749 + 28051 = 46800. %C A267028 In order to find the index L for satisfying the property (3), we choose, for instance, the index b(3,2) = 8 => for n = 8, {P(8,k)} = {97423, 97429, 97441, 97453, 97459} and S(3, 8) = 1 because 28051 + 97459 = 28057 + 97453 = 28069 + 97441 = 28081 + 97429 = 28087 + 97423 = 125510. %C A267028 Conclusion: S(1, 3) = 1 and S(3, 8) = 1 => S(1, 8) = 1 with 18713 + 97459 = 18719 + 97453 = 18731 + 97441 = 18743 + 97429 = 18749 + 97423 = 116172. %e A267028 The first row is [18713, 18719, 18731, 18743, 18749] because 18713 + 18749 = 18719 + 18743 = 2*18731 = 37462. %e A267028 The array starts with: %e A267028 [18713, 18719, 18731, 18743, 18749] %e A267028 [25603, 25609, 25621, 25633, 25639] %e A267028 [28051, 28057, 28069, 28081, 28087] %e A267028 ... %p A267028 U:=array(1..50,1..5):W:=array(1..2):kk:=0: %p A267028 for n from 4 to 10000 do: %p A267028 for m from 2 by -1 to 1 do: %p A267028 q:=ithprime(n-m)+ithprime(n+m):W[m]:=q: %p A267028 od: %p A267028 if W[1]=W[2] and W[1]=2*ithprime(n) then %p A267028 kk:=kk+1:U[kk,1]:=ithprime(n-2): %p A267028 U[kk,2]:=ithprime(n-1):U[kk,3]:=ithprime(n): %p A267028 U[kk,4]:=ithprime(n+1):U[kk,5]:=ithprime(n+2): %p A267028 else fi:od:print(U): %p A267028 for i from 1 to kk do: %p A267028 for j from i+1 to kk do: %p A267028 s1:=U[i,1]+U[j,5]: %p A267028 s2:=U[i,2]+U[j,4]: %p A267028 s3:=U[i,3]+U[j,3]: %p A267028 s4:=U[i,4]+U[j,2]: %p A267028 s5:=U[i,5]+U[j,1]: %p A267028 if s1=s2 and s2=s3 and s3=s4 and s4=s5 %p A267028 then %p A267028 printf("%d %d \n",i,j): %p A267028 else fi: %p A267028 od: %p A267028 od: %Y A267028 Cf. A051795, A055380, A055382. %K A267028 nonn,tabf %O A267028 1,1 %A A267028 _Michel Lagneau_, Feb 23 2016