cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267030 Primes p such that p*(3^p) + 2 is also prime.

This page as a plain text file.
%I A267030 #36 Oct 08 2024 17:27:42
%S A267030 3,5,11,17,317,373,10313
%N A267030 Primes p such that p*(3^p) + 2 is also prime.
%C A267030 The terms of this sequence are the prime terms of A265121.
%C A267030 The first few corresponding primes are 83, 1217, 1948619, 2195382773, ... .
%C A267030 a(8) > 10^5. - _Michael S. Branicky_, Oct 08 2024
%e A267030 p = 17; [17 * (3 ^ 17) + 2] = 2195382773 (is a prime number).
%p A267030 select(p -> isprime(p) and isprime(p*3^p+2), [seq(i,i=3..2000,2)]); # _Robert Israel_, Jan 10 2016
%t A267030 Select[Prime@ Range@ 1000, PrimeQ[# (3^#) + 2] &] (* _Michael De Vlieger_, Jan 09 2016 *)
%o A267030 (Magma) [p: p in PrimesUpTo(1000) | IsPrime((p*(3^p)+2))]; // _Vincenzo Librandi_, Jan 10 2016
%o A267030 (PARI) lista(nn) = forprime(p=2, nn, if(ispseudoprime((p*(3^p) + 2)), print1(p, ", "))); \\ _Altug Alkan_, Jan 10 2016
%Y A267030 Cf. A265121.
%K A267030 nonn,more
%O A267030 1,1
%A A267030 _Emre APARI_, Jan 09 2016