This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267032 #25 Apr 28 2023 08:18:06 %S A267032 6,24,489,4569,14129,147984,2149284,25191729,621806289,5259630921, %T A267032 19998666404,102500044289,3925449108561,13071591635856,42248099518244, %U A267032 4224809951824400,43007675962234436,506034404021388356,6997839444766224,699783944476622400 %N A267032 Difference between smallest integer square >= 10^(2*n+1) and 10^(2*n+1). %H A267032 Robert Israel, <a href="/A267032/b267032.txt">Table of n, a(n) for n = 0..998</a> %H A267032 Gwillim Law, <a href="https://gwillim.wordpress.com/2015/12/12/some-sequences/">blog post</a>, Dec. 12, 2015 %F A267032 a(n) = A068527(A013715(n)). - _Michel Marcus_, Jan 17 2016 %e A267032 a(0) = 6 = 4^2 - 10; a(1) = 24 = 32^2 - 1000. %p A267032 f:= proc(n) local s; %p A267032 s:= isqrt(10^(2*n+1)); %p A267032 if s^2 < 10^(2*n+1) then s:= s+1 fi; %p A267032 s^2 - 10^(2*n+1) %p A267032 end proc: %p A267032 seq(f(n),n=0..40); # _Robert Israel_, Jan 17 2016 %t A267032 dsis[n_]:=Module[{c=10^(2n+1)},(Floor[Sqrt[c]]+1)^2-c]; Array[dsis,20,0] (* _Harvey P. Dale_, Apr 27 2019 *) %o A267032 (Python) %o A267032 from math import isqrt %o A267032 def A267032(n): return (isqrt(m:=10**((n<<1)+1))+1)**2-m # _Chai Wah Wu_, Apr 27 2023 %Y A267032 Cf. A048761, A068527. %Y A267032 Cf. A238454 (a similar sequence with powers of 2). - _Michel Marcus_, Jan 17 2016 %K A267032 nonn %O A267032 0,1 %A A267032 _Gwillim Law_, Jan 09 2016