cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267044 Binary representation of the middle column of the "Rule 91" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 100, 1000, 10001, 100010, 1000101, 10001010, 100010101, 1000101010, 10001010101, 100010101010, 1000101010101, 10001010101010, 100010101010101, 1000101010101010, 10001010101010101, 100010101010101010, 1000101010101010101, 10001010101010101010
Offset: 0

Views

Author

Robert Price, Jan 09 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=91; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}] (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 10 2016: (Start)
a(n) = (-550+450*(-1)^n+9901*10^n)/9900 for n>1.
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>4. [Typo corrected by Karl V. Keller, Jr., Mar 16 2022]
G.f.: (1-x^2+x^4) / ((1-x)*(1+x)*(1-10*x)).
(End)

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022