cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267044 Binary representation of the middle column of the "Rule 91" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 100, 1000, 10001, 100010, 1000101, 10001010, 100010101, 1000101010, 10001010101, 100010101010, 1000101010101, 10001010101010, 100010101010101, 1000101010101010, 10001010101010101, 100010101010101010, 1000101010101010101, 10001010101010101010
Offset: 0

Views

Author

Robert Price, Jan 09 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=91; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}] (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 10 2016: (Start)
a(n) = (-550+450*(-1)^n+9901*10^n)/9900 for n>1.
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>4. [Typo corrected by Karl V. Keller, Jr., Mar 16 2022]
G.f.: (1-x^2+x^4) / ((1-x)*(1+x)*(1-10*x)).
(End)

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022

A294523 Lexicographically earliest sequence of positive terms, such that, for any n > 0, the binary expansion of n, say of size k+1, is (1, a(n) mod 2, a^2(n) mod 2, ..., a^k(n) mod 2) (where a^i denotes the i-th iterate of the sequence).

Original entry on oeis.org

1, 2, 1, 2, 6, 5, 1, 2, 10, 6, 14, 9, 5, 13, 1, 2, 18, 10, 22, 12, 6, 14, 30, 17, 9, 5, 11, 25, 13, 29, 1, 2, 34, 18, 38, 20, 10, 22, 46, 24, 12, 6, 54, 28, 14, 30, 62, 33, 17, 9, 19, 41, 5, 11, 23, 49, 25, 13, 27, 57, 29, 61, 1, 2, 66, 34, 70, 36, 18, 38, 78
Offset: 1

Views

Author

Rémy Sigrist, Nov 01 2017

Keywords

Comments

More informally, the parity of the iterate of the sequence at n gives the binary expansion of n (beyond the leading 1).
Apparently, iterating the sequence always leads to one of these three loops:
- the fixed point (1) iff we start from 2^k-1 for some k > 0,
- the fixed point (2) iff we start from 2^k for some k > 0,
- or (5, 6) for any other starting value.
a(n) is even iff n belongs to A004754.
a(n) is odd iff n belongs to A004760.
If a(n) > n then a(n) = A080541(n).
If n < 2^k then a(n) < 2^k.
Apparently, if a(n) > 2, then A054429(a(n)) = a(A054429(n)); this accounts for the symmetry of the part connected to the loop (5,6) in the oriented graph of this sequence.

Examples

			For n=11:
- the binary representation of 11 is (1,0,1,1),
- a(11) = 14 has parity 0,
- a(14) = 13 has parity 1,
- a(13) = 5 has parity 1,
- we find the binary digits of 11 beyond the initial 1, in order: 0, 1, 1.
See also representations of first terms in Links section.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = 1 iff n = A000225(k) for some k > 0.
a(n) = 2 iff n = A000079(k) for some k > 0.
a(n) = 5 iff n = A081254(k) for some k > 2.
a(n) = 6 iff n = A000975(k) for some k > 2.
a(n) = 10 iff n = A081253(k) for some k > 2.
a(n) = 12 iff n = A266613(k) for some k > 3.
a(n) = 13 iff n = A052997(k) for some k > 2.
a(n) = 14 iff n = A266721(k) for some k > 2.
a(n) = 18 iff n = A267045(k) for some k > 3.
a(n) = 54 iff n = A266248(k) for some k > 4.
These formulas come from the fact that each sequence on the right side, say f, eventually satisfies: f(n) = floor(f(n+1)/2), and f(n) and f(n+2) have the same parity.
Showing 1-2 of 2 results.