This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267063 #7 Sep 22 2017 22:22:31 %S A267063 47,7547,96847,8834047,335645147,17176306847,781541264047, %T A267063 37170460359547,1738056704580047,81798124546203647, %U A267063 3840142385820445147,180452111090491814047,8476561791232835731247,398233155957829357831547,18708208945112842389197647 %N A267063 Coefficient of x^4 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones. %C A267063 See A265762 for a guide to related sequences. %H A267063 G. C. Greubel, <a href="/A267063/b267063.txt">Table of n, a(n) for n = 0..595</a> %H A267063 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1). %F A267063 a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9). %F A267063 G.f.: (-47 - 5949 x + 193309 x^2 - 370818 x^3 - 1746090 x^4 + 850782 x^5 + 32909 x^6 - 15549 x^7 + 353 x^8)/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9). %e A267063 Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: %e A267063 [u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 47. %e A267063 [1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = 7547; %e A267063 [1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = 96847. %t A267063 u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}]; %t A267063 f[n_] := FromContinuedFraction[t[n]]; %t A267063 t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; %t A267063 Coefficient[t, x, 0]; (* A266803 *) %t A267063 Coefficient[t, x, 1]; (* A266808 *) %t A267063 Coefficient[t, x, 2]; (* A267061 *) %t A267063 Coefficient[t, x, 3]; (* A267062 *) %t A267063 Coefficient[t, x, 4]; (* A267063 *) %t A267063 Coefficient[t, x, 5]; (* A267064 *) %t A267063 Coefficient[t, x, 6]; (* A267065 *) %t A267063 Coefficient[t, x, 7]; (* A267066 *) %t A267063 Coefficient[t, x, 8]; (* A266803 *) %Y A267063 Cf. A265762, A266803, A266808, A267061, A267062, A267064, A267065, A267066. %K A267063 nonn,easy %O A267063 0,1 %A A267063 _Clark Kimberling_, Jan 10 2016