A267064 Coefficient of x^5 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
-68, -5760, -35252, -4744764, -160222784, -8602304988, -384492157220, -18412926914112, -858719581400084, -40454410268348124, -1898470063828865408, -89224033424689993980, -4190977987082560730372, -196898460771438377224704, -9249826380311085293230964
Offset: 0
Examples
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -68. [1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -5760; [1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -35252.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
Programs
-
Mathematica
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; Coefficient[t, x, 0]; (* A266803 *) Coefficient[t, x, 1]; (* A266808 *) Coefficient[t, x, 2]; (* A267061 *) Coefficient[t, x, 3]; (* A267062 *) Coefficient[t, x, 4]; (* A267063 *) Coefficient[t, x, 5]; (* A267064 *) Coefficient[t, x, 6]; (* A267065 *) Coefficient[t, x, 7]; (* A267066 *) Coefficient[t, x, 8]; (* A266803 *)
Formula
a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: (4 (17 + 862 x - 52285 x^2 - 62714 x^3 + 326152 x^4 + 254390 x^5 - 38255 x^6 - 3838 x^7 + 111 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9).
Comments