This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267067 #16 Feb 16 2025 08:33:29 %S A267067 3,17,23,37,41,53,59,67,71,79,89,97,113,131,157,163,179,211,223,239, %T A267067 251,269,293,307,311,331,337,367,373,379,383,397,409,419,439,449,487, %U A267067 491,499,503,521,547,593,599,613,631,673,683,691,701,709,719,733,739 %N A267067 Primes p such that mu(p-2) = 1; that is, p-2 is squarefree and has an even number of prime factors, where mu is the Moebius function (A008683). %C A267067 From _Robert Israel_, Jan 10 2016: (Start) %C A267067 Includes all members of A063638 except 11. %C A267067 The first terms not in A063638 are 3 and 1367. (End) %H A267067 Robert Israel, <a href="/A267067/b267067.txt">Table of n, a(n) for n = 1..10000</a> %H A267067 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusFunction.html">Moebius Function</a> %p A267067 select(p -> isprime(p) and numtheory:-mobius(p-2)=1, [seq(i,i=3..1000,2)]); # _Robert Israel_, Jan 10 2016 %t A267067 Select[Prime[Range[200]], MoebiusMu[# - 2] == 1 &] %o A267067 (Magma) [n: n in [3..1000] | IsPrime(n) and MoebiusMu(n-2) eq 1]; %o A267067 (PARI) isok(p) = isprime(p) && (p>2) && (moebius(p-2)==1); \\ _Michel Marcus_, Mar 08 2023 %Y A267067 Cf. A008683, A063638, A088179. %K A267067 nonn %O A267067 1,1 %A A267067 _Vincenzo Librandi_, Jan 10 2016