This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267069 #38 Feb 16 2025 08:33:29 %S A267069 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, %T A267069 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,49,50,51, %U A267069 52,53,54,57,59,60,61,63,64,65,66,67,69,73,74,76,77,80 %N A267069 Nonnegative numbers n such that abs(103*n^2 - 4707*n + 50383) is prime. %C A267069 43 is the smallest number not in this sequence. %C A267069 See A267252 for more information. - _Hugo Pfoertner_, Dec 13 2019 %H A267069 Robert Price, <a href="/A267069/b267069.txt">Table of n, a(n) for n = 1..3885</a> %H A267069 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a> %e A267069 4 is in this sequence since 103*4^2 - 4707*4 + 50383 = 1648-18828+50383 = 33203 is prime. %t A267069 Select[Range[0, 100], PrimeQ[103#^2 - 4707# + 50383 ] &] %o A267069 (PARI) lista(nn) = for(n=0, nn, if(isprime(abs(103*n^2-4707*n+50383)), print1(n, ", "))); \\ _Altug Alkan_, Apr 28 2016, corrected by _Hugo Pfoertner_, Dec 13 2019 %Y A267069 Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266. %Y A267069 Cf. A271980, A272030, A272074, A272075, A272160, A271144, A272285, A267252. %K A267069 nonn %O A267069 1,3 %A A267069 _Robert Price_, Apr 28 2016 %E A267069 Title corrected by _Hugo Pfoertner_, Dec 13 2019