This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267096 #18 Sep 20 2016 09:11:50 %S A267096 3,15,525,1414875,41985913344375,433555011900329243987584396875, %T A267096 3514495551481947615680580256869117013417604971088496013610671875 %N A267096 a(n) = Product_{i=0..n} prime(i+2)^binomial(n,i). %H A267096 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A267096 a(n) = Product_{i=0..n} prime(i+2)^C(n,i). %F A267096 a(n) = A003961(A007188(n)). %e A267096 Terms are obtained by exponentiating the odd primes in range [3 .. prime(2+n)] with the binomial coefficients obtained from row n of Pascal's triangle (A007318) and then multiplying the factors together: %e A267096 3^1 %e A267096 3^1 * 5^1 %e A267096 3^1 * 5^2 * 7^1 %e A267096 3^1 * 5^3 * 7^3 * 11^1 %e A267096 3^1 * 5^4 * 7^6 * 11^4 * 13^1 %e A267096 etc. %o A267096 (Scheme) %o A267096 (define (A267096 n) (mul (lambda (k) (expt (A000040 (+ 2 k)) (A007318tr n k))) 0 n)) ;; Where A007318tr gives binomial coefficients, as in A007318. %o A267096 (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (1+ i) (* res (intfun i))))))) %Y A267096 Second column (or diagonal from right) in A066117. %Y A267096 Cf. A000040, A003961, A007188, A007318, A252738, A276804. %K A267096 nonn %O A267096 0,1 %A A267096 _Antti Karttunen_, Feb 06 2016