This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267116 #40 Aug 31 2022 10:51:14 %S A267116 0,1,1,2,1,1,1,3,2,1,1,3,1,1,1,4,1,3,1,3,1,1,1,3,2,1,3,3,1,1,1,5,1,1, %T A267116 1,2,1,1,1,3,1,1,1,3,3,1,1,5,2,3,1,3,1,3,1,3,1,1,1,3,1,1,3,6,1,1,1,3, %U A267116 1,1,1,3,1,1,3,3,1,1,1,5,4,1,1,3,1,1,1,3,1,3,1,3,1,1,1,5,1,3,3,2,1,1,1,3,1,1,1,3,1,1,1,5,1,1,1,3,3,1,1,3 %N A267116 Bitwise-OR of the exponents of primes in the prime factorization of n. %H A267116 Antti Karttunen, <a href="/A267116/b267116.txt">Table of n, a(n) for n = 1..10000</a> %H A267116 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A267116 a(1) = 0; for n > 1: a(n) = A067029(n) OR a(A028234(n)). [Here OR stands for bitwise-or, A003986.] %F A267116 Other identities and observations. For all n >= 1: %F A267116 a(n) = A007814(n) OR A260728(n) OR A267113(n). %F A267116 a(n) = A001222(n) - A268374(n). %F A267116 A268387(n) <= a(n) <= A001222(n). %F A267116 From _Peter Munn_, Jan 08 2020: (Start) %F A267116 a(A059896(n,k)) = a(n) OR a(k). %F A267116 a(A003961(n)) = a(n). %F A267116 a(n^2) = 2*a(n). %F A267116 a(n) = A087207(A225546(n)). %F A267116 a(A225546(n)) = A087207(n). %F A267116 (End) %e A267116 For n = 4 = 2^2, bitwise-OR of 2 alone is 2, thus a(4) = 2. %e A267116 For n = 6 = 2^1 * 3^1, when we take a bitwise-or of 1 and 1, we get 1, thus a(6) = 1. %e A267116 For n = 24 = 2^3 * 3^1, bitwise-or of 3 and 1 ("11" and "01" in binary) gives "11", thus a(24) = 3. %e A267116 For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-or of 1, 1, 1 and 1 gives 1, thus a(210) = 1. %e A267116 For n = 720 = 2^4 * 3^2 * 5^1, bitwise-or of 4, 2 and 1 ("100", "10" and "1" in binary) gives 7 ("111" in binary), thus a(720) = 7. %p A267116 read("transforms"): %p A267116 A267116 := proc(n) %p A267116 local a,e ; %p A267116 a := 0 ; %p A267116 for e in ifactors(n)[2] do %p A267116 a := ORnos(a,op(2,e)) ; %p A267116 end do: %p A267116 a ; %p A267116 end proc: # _R. J. Mathar_, Feb 16 2021 %t A267116 {0}~Join~Rest@ Array[BitOr @@ Map[Last, FactorInteger@ #] &, 120] (* _Michael De Vlieger_, Feb 04 2016 *) %o A267116 (Scheme, two variants, first one with memoization-macro definec) %o A267116 (definec (A267116 n) (cond ((= 1 n) 0) (else (A003986bi (A067029 n) (A267116 (A028234 n)))))) ;; A003986bi implements bitwise-or (see A003986). %o A267116 (define (A267116 n) (A003986bi (A007814 n) (A003986bi (A260728 n) (A267113 n)))) %o A267116 (PARI) a(n)=my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitor(b, f[k,2]);); b; \\ _Michel Marcus_, Feb 05 2016 %o A267116 (PARI) a(n)=if(n>1, fold(bitor, factor(n)[,2]), 0) \\ _Charles R Greathouse IV_, Aug 04 2016 %o A267116 (Python) %o A267116 from functools import reduce %o A267116 from operator import or_ %o A267116 from sympy import factorint %o A267116 def A267116(n): return reduce(or_,factorint(n).values(),0) # _Chai Wah Wu_, Aug 31 2022 %Y A267116 Cf. A001222, A003986, A007814, A028234, A067029. %Y A267116 Cf. A000290 (indices of even numbers). %Y A267116 Cf. A000037 (indices of odd numbers). %Y A267116 Nonunit terms of A005117, A062503, A113849 give the positions of ones, twos, fours respectively in this sequence. %Y A267116 Sequences with similar definitions: A260728, A267113, A267115 (bitwise-AND) and A268387 (bitwise-XOR of exponents). %Y A267116 Sequences with related analysis: A267114, A268374, A268375, A268376. %Y A267116 Sequences A088529, A136565 and A181591 coincide with a(n) for n: 2 <= n < 24. %Y A267116 A003961, A059896 are used to express relationship between terms of this sequence. %Y A267116 Related to A087207 via A225546. %K A267116 nonn %O A267116 1,4 %A A267116 _Antti Karttunen_, Feb 03 2016