A267120 Triangle of coefficients of Gaussian polynomials [2n+3,3]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=3n.
1, 0, -1, 1, 1, -1, 0, 5, -2, -4, 1, 1, 0, 2, -2, -15, 7, 17, -5, -7, 1, 1, 1, 0, -15, 6, 53, -23, -67, 22, 38, -8, -10, 1, 1, 0, -3, 3, 55, -28, -189, 81, 261, -90, -182, 46, 68, -11, -13, 1, 1, -1, 0, 30, -12, -229, 106, 691, -292, -1010, 359, 817, -229, -387, 79, 107, -14, -16, 1, 1
Offset: 0
Examples
The irregular triangle a(n, k) begins: n/k 0 1 2 3 4 5 6 7 8 9 10 11 12 0: 1 1: 0 -1 1 1 2: -1 0 5 -2 -4 1 1 3: 0 2 -2 -15 7 17 -5 -7 1 1 4: 1 0 -15 6 53 -23 -67 22 38 -8 -10 1 1 ... Row n=5: 0 -3 3 55 -28 -189 81 261 -90 -182 46 68 -11 -13 1 1; Row n=6: -1 0 30 -12 -229 106 691 -292 -1010 359 817 -229 -387 79 107 -14 -16 1 1. Row n=7: 0 4 -4 -134 70 896 -416 -2561 1073 3903 -1415 -3529 1057 1991 -467 -709 121 155 -17 -19 1 1. ... Reformatted and extended. - _Wolfdieter Lang_, Feb 13 2016
Links
- Stephen O'Sullivan, Table of n, a(n) for n = 0..1425
- S. O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
- Wikipedia, Gaussian binomial coefficients.
Programs
-
Maple
A267120 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+1),t$3)/3!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267120(n, k), k = 0 .. 3*n), n = 0 .. 20); # More efficient: N:= 20: # to get rows 0 to N P[0]:= (1+t)*(t^2 + t*x + 1): B[0]:= 1: for n from 1 to N do P[n]:= expand(series(P[n-1]*(1+t^2+2*t*orthopoly[T](n+1,x/2)),t,4)); B[n]:= coeff(P[n],t,3); od: seq(seq(coeff(B[n],x,j),j=0..3*n),n=0..N); # Robert Israel, Jan 15 2016
-
Mathematica
row[n_] := 1/3! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 3}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Jan 16 2016 *)
Formula
G.f. for row polynomial: G(n,x) = (d^3/dt^3)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2))/3!)|_{t=0}.
Comments