A267121 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y*z*(x+9*y+11*z+10*w) a square, where x is a positive integer and y,z,w are nonnegative integers.
1, 3, 2, 1, 6, 7, 1, 3, 7, 7, 6, 2, 6, 12, 1, 1, 12, 10, 7, 6, 13, 7, 2, 7, 8, 19, 8, 1, 18, 12, 2, 3, 14, 15, 13, 7, 7, 18, 1, 7, 25, 14, 6, 6, 19, 13, 2, 2, 14, 22, 12, 6, 18, 27, 4, 12, 13, 9, 19, 1, 18, 25, 5, 1, 24, 26, 6, 12, 26, 14, 2, 10, 16, 31, 16, 7, 24, 13, 4, 6
Offset: 1
Keywords
Examples
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2 > 0 and 2*0*0*(2+9*0+11*0+10*0) = 0^2. a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2 > 0 and 2*1*1*(2+9*1+11*1+10*1) = 8^2. a(15) = 1 since 15 = 2^2 + 1^2 + 3^2 + 1^2 with 2 > 0 and 2*1*3*(2+9*1+11*3+10*1) = 18^2. a(39) = 1 since 39 = 1^2 + 1^2 + 1^2 + 6^2 with 1 > 0 and 1*1*1*(1+9*1+11*1+10*6) = 9^2. a(119) = 1 since 119 = 1^2 + 1^2 + 9^2 + 6^2 with 1 > 0 and 1*1*9*(1+9*1+11*9+10*6) = 39^2. a(127) = 1 since 127 = 5^2 + 1^2 + 1^2 + 10^2 with 5 > 0 and 5*1*1*(5+9*1+11*1+10*10) = 25^2. a(159) = 1 since 159 = 3^2 + 1^2 + 7^2 + 10^2 with 3 > 0 and 3*1*7*(3+9*1+11*7+10*10) = 63^2. a(239) = 1 since 239 = 3^2 + 3^2 + 10^2 + 11^2 with 3 > 0 and 3*3*10*(3+9*3+11*10+10*11) = 150^2. a(359) = 1 since 359 = 9^2 + 11^2 + 11^2 + 6^2 with 9 > 0 and 9*11*11*(9+9*11+11*11+10*6) = 561^2. a(391) = 1 since 391 = 19^2 + 5^2 + 1^2 + 2^2 with 19 > 0 and 19*5*1*(19+9*5+11*1+10*2) = 95^2. a(527) = 1 since 527 = 21^2 + 6^2 + 7^2 + 1^2 with 21 > 0 and 21*6*7*(21+9*6+11*7+10*1) = 378^2. a(543) = 1 since 543 = 15^2 + 13^2 + 10^2 + 7^2 with 15 > 0 and 15*13*10*(15+9*13+11*10+10*7) = 780^2. a(863) = 1 since 863 = 9^2 + 9^2 + 5^2 + 26^2 with 9 > 0 and 9*9*5*(9+9*9+11*5+10*26) = 405^2. a(5791) = 1 since 5791 = 57^2 + 38^2 + 33^2 + 3^2 with 57 > 0 and 57*38*33*(57+9*38+11*33+10*3) = 7524^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
- Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x*y*z(x+9y+11z+10*Sqrt[n-x^2-y^2-z^2])],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]
Comments