cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267121 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y*z*(x+9*y+11*z+10*w) a square, where x is a positive integer and y,z,w are nonnegative integers.

Original entry on oeis.org

1, 3, 2, 1, 6, 7, 1, 3, 7, 7, 6, 2, 6, 12, 1, 1, 12, 10, 7, 6, 13, 7, 2, 7, 8, 19, 8, 1, 18, 12, 2, 3, 14, 15, 13, 7, 7, 18, 1, 7, 25, 14, 6, 6, 19, 13, 2, 2, 14, 22, 12, 6, 18, 27, 4, 12, 13, 9, 19, 1, 18, 25, 5, 1, 24, 26, 6, 12, 26, 14, 2, 10, 16, 31, 16, 7, 24, 13, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, May 01 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 7, 15, 39, 119, 127, 159, 239, 359, 391, 527, 543, 863, 5791).
(ii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with 2*x*y*(x+2y+z+2w) (or 2*x*y*(x+6y+z+2w), or x*y*(x+11y+z+2w)) a square, where x,y,z,w are nonnegative integers with z > 0 (or w > 0).
(iii) Any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that w*(a*w+b*x+c*y+d*z) is a square, provided that (a,b,c,d) is among the following quadruples (1,1,2,3), (1,1,4,5), (1,1,6,9), (1,2,6,34), (1,3,6,m) (m = 12, 21, 27, 36), (1,3,9,18), (1,3,9,36), (1,3,18,27), (1,3,24,117), (1,3,90,99), (1,6,6,18), (1,6,6,30), (1,8,16,24).
For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723.

Examples

			a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2 > 0 and 2*0*0*(2+9*0+11*0+10*0) = 0^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2 > 0 and 2*1*1*(2+9*1+11*1+10*1) = 8^2.
a(15) = 1 since 15 = 2^2 + 1^2 + 3^2 + 1^2 with 2 > 0 and 2*1*3*(2+9*1+11*3+10*1) = 18^2.
a(39) = 1 since 39 = 1^2 + 1^2 + 1^2 + 6^2 with 1 > 0 and 1*1*1*(1+9*1+11*1+10*6) = 9^2.
a(119) = 1 since 119 = 1^2 + 1^2 + 9^2 + 6^2 with 1 > 0 and 1*1*9*(1+9*1+11*9+10*6) = 39^2.
a(127) = 1 since 127 = 5^2 + 1^2 + 1^2 + 10^2 with 5 > 0 and 5*1*1*(5+9*1+11*1+10*10) = 25^2.
a(159) = 1 since 159 = 3^2 + 1^2 + 7^2 + 10^2 with 3 > 0 and 3*1*7*(3+9*1+11*7+10*10) = 63^2.
a(239) = 1 since 239 = 3^2 + 3^2 + 10^2 + 11^2 with 3 > 0 and 3*3*10*(3+9*3+11*10+10*11) = 150^2.
a(359) = 1 since 359 = 9^2 + 11^2 + 11^2 + 6^2 with 9 > 0 and 9*11*11*(9+9*11+11*11+10*6) = 561^2.
a(391) = 1 since 391 = 19^2 + 5^2 + 1^2 + 2^2 with 19 > 0 and 19*5*1*(19+9*5+11*1+10*2) = 95^2.
a(527) = 1 since 527 = 21^2 + 6^2 + 7^2 + 1^2 with 21 > 0 and 21*6*7*(21+9*6+11*7+10*1) = 378^2.
a(543) = 1 since 543 = 15^2 + 13^2 + 10^2 + 7^2 with 15 > 0 and 15*13*10*(15+9*13+11*10+10*7) = 780^2.
a(863) = 1 since 863 = 9^2 + 9^2 + 5^2 + 26^2 with 9 > 0 and 9*9*5*(9+9*9+11*5+10*26) = 405^2.
a(5791) = 1 since 5791 = 57^2 + 38^2 + 33^2 + 3^2 with 57 > 0 and 57*38*33*(57+9*38+11*33+10*3) = 7524^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x*y*z(x+9y+11z+10*Sqrt[n-x^2-y^2-z^2])],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]