This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267169 #15 Feb 13 2024 14:38:17 %S A267169 1,7,27,78,188,399,771,1386,2352,3807,5924,8916,13041,18606,25971, %T A267169 35554,47835,63361,82750,106695,135968,171425,214011,264764,324820, %U A267169 395417,477900,573724,684459,811795,957546,1123655,1312198,1525389,1765583,2035281,2337134,2673948,3048689,3464488,3924646,4432636,4992108,5606893,6281008,7018660 %N A267169 Growth series for affine Coxeter group B_6. %D A267169 N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t). %H A267169 Ray Chandler, <a href="/A267169/b267169.txt">Table of n, a(n) for n = 0..1000</a> %H A267169 <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 3, 3, -6, 3, 4, -10, 10, -4, -2, 2, 3, -6, 3, 2, -2, -4, 10, -10, 4, 3, -6, 3, 3, -6, 4, -1). %F A267169 The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1]. %Y A267169 The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175. %K A267169 nonn %O A267169 0,2 %A A267169 _N. J. A. Sloane_, Jan 11 2016