This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267173 #15 Feb 13 2024 14:45:41 %S A267173 1,11,65,276,945,2772,7228,17170,37807,78155,153154,286660,515570, %T A267173 895388,1507595,2469247,3945292,6164170,9437339,14183455,20958025, %U A267173 30489449,43722470,61870160,86475684,119485204,163333410,221043295,296341927,393794113,518955998,678550795,880669001,1134995618,1453067068,1848560666,2337619696,2939217322 %N A267173 Growth series for affine Coxeter group B_10. %D A267173 N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t). %H A267173 Ray Chandler, <a href="/A267173/b267173.txt">Table of n, a(n) for n = 0..1000</a> %H A267173 <a href="/index/Rec#order_74">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 34, -28, -1, 34, -48, 34, -1, -28, 35, -28, 29, -42, 49, -33, -5, 42, -46, 8, 43, -66, 43, 7, -39, 21, 29, -62, 55, -30, 22, -44, 74, -71, 18, 52, -84, 52, 18, -71, 74, -44, 22, -30, 55, -62, 29, 21, -39, 7, 43, -66, 43, 8, -46, 42, -5, -33, 49, -42, 29, -28, 35, -28, -1, 34, -48, 34, -1, -28, 34, -21, 7, -1). %F A267173 The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1]. %Y A267173 The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175. %K A267173 nonn %O A267173 0,2 %A A267173 _N. J. A. Sloane_, Jan 11 2016