This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267176 #15 Feb 18 2024 13:11:13 %S A267176 1,9,44,156,450,1122,2508,5149,9875,17910,31000,51567,82892,129330, %T A267176 196561,291880,424528,606067,850803,1176260,1603708,2158748,2871957, %U A267176 3779597,4924393,6356383,8133842,10324283,13005538,16266923,20210492,24952383,30624256,37374826,45371496,54802094,65876718,78829693,93921640,111441659,131709633 %N A267176 The growth series for the affine Weyl group E_8. %D A267176 N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t). %D A267176 H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10. %D A267176 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial; also Table 3.1 page 59. %H A267176 Ray Chandler, <a href="/A267176/b267176.txt">Table of n, a(n) for n = 0..1000</a> %H A267176 <a href="/index/Rec#order_114">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 2, -2, 1, 0, 1, -2, 2, -2, 1, 0, 1, -3, 3, -1, 0, -1, 3, -5, 5, -3, 2, -2, 2, -3, 4, -2, 0, -2, 5, -6, 6, -4, 1, -1, 4, -6, 5, -3, 2, -3, 6, -7, 4, -2, 2, -2, 4, -7, 6, -3, 2, -3, 5, -6, 4, -1, 1, -4, 6, -6, 5, -2, 0, -2, 4, -3, 2, -2, 2, -3, 5, -5, 3, -1, 0, -1, 3, -3, 1, 0, 1, -2, 2, -2, 1, 0, 1, -2, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, -1). %F A267176 G.f. = t1/t2, where t1 is %F A267176 (1+t)*(1+t+t^2+t^3+t^4+t^5+t^6+t^7) %F A267176 *(1+t+t^2+t^3+t^4+t^5+t^6+t^7+t^8+t^9+t^10+t^11) %F A267176 *(1+t+t^2+t^3+t^4+t^5+t^6+t^7+t^8+t^9+t^10+t^11+t^12+t^13) %F A267176 *(1+t+t^2+t^3+t^4+t^5+t^6+t^7+t^8+t^9+t^10+t^11+t^12+t^13+t^14+t^15+t^16+t^17) %F A267176 *(1+t+t^2+t^3+t^4+t^5+t^6+t^7+t^8+t^9+t^10+t^11+t^12+t^13+t^14+t^15+t^16+t^17+t^18+t^19) %F A267176 *(1+t+t^2+t^3+t^4+t^5+t^6+t^7+t^8+t^9+t^10+t^11+t^12+t^13+t^14+t^15+t^16+t^17+t^18+t^19+t^20+t^21+t^22+t^23) %F A267176 *(1+t^20+t^21+t^22+t^23+t^18+t^19+t^2+t^3+t^4+t^5+t^6+t^12+t^13+t^7+t^8+t^9+t^10+t^11+t^14+t^15+t^16+t^17+t+t^24+t^25+t^26+t^27+t^28+t^29), %F A267176 and t2 = (1-t)*(1-t^7)*(1-t^11)*(1-t^13)*(1-t^17)*(1-t^19)*(1-t^23)*(1-t^29). %Y A267176 For the growth series for the finite group see A162494. %K A267176 nonn %O A267176 0,2 %A A267176 _N. J. A. Sloane_, Jan 11 2016