This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267217 #11 Feb 16 2025 08:33:29 %S A267217 10,27,85,175,451,637,1105,1387,2047,3277,3751,5365,6601,7267,8695, %T A267217 11077,13747,14701,17755,19951,21097,24727,27307,31417,37345,40501, %U A267217 42127,45475,47197,50737,64135,68251,74665,76867,88357,90751,98125,105787,111055,119197,127627,130501,145351,148417,154645 %N A267217 10-gonal (or decagonal) numbers with prime indices. %H A267217 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DecagonalNumber.html">Decagonal Number</a> %H A267217 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeNumber.html">Prime Number</a> %F A267217 a(n) = prime(n)*(4*prime(n) - 3) = A000040(n)*(4*A000040(n) - 4). %F A267217 a(n) = A001107(A000040(n)). %F A267217 a(n) = sigma_0(48^(prime(n) - 1)) = A000005(A009992(A000040(n) - 1)). %t A267217 Table[Prime[n] (4 Prime[n] - 3), {n, 1, 45}] %t A267217 Module[{nn=200,pn},pn=PolygonalNumber[10,Range[nn]];Table[pn[[p]],{p,Prime[ Range[PrimePi[nn]]]}]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 27 2020 *) %o A267217 (PARI) lista(nn) = forprime(p=2, nn, print1(p*(4*p-3), ", ")); \\ _Altug Alkan_, Jan 12 2016 %Y A267217 Cf. A000040, A001107, A001248, A034953, A116995, A117961, A267144. %K A267217 nonn,easy %O A267217 1,1 %A A267217 _Ilya Gutkovskiy_, Jan 12 2016